Fly Ash

  • Recently, two people died and four were missing after a dyke of a fly ash pond of Reliance’s Sasan Ultra Mega Power Project in Singrauli breached , causing spillage on several acres of agricultural fields.
  • The project, owned by Anil Ambani's Reliance Power, is 780 kilometres northeast of the state capital of Bhopal.
  • Singrauli houses various power projects, including NTPC, Coal India, Reliance Power and Essar Power.

About Fly Ash

  • Also known as flue ash and pulverised fuel ash, fly ash is a fine powder that is a byproduct of burning pulverized coal in electric generation power plants.


  • It is produced by coal-fired electric and steam generating plants. Typically, coal is pulverized and blown with air into the boiler's combustion chamber where it immediately ignites, generating heat and producing a molten mineral residue.
  • Boiler tubes extract heat from the boiler, cooling the flue gas and causing the molten mineral residue to harden and form ash.
  • Coarse ash particles, referred to as bottom ash or slag, fall to the bottom of the combustion chamber, while the lighter fine ash particles, termed fly ash, remain suspended in the flue gas.


Physical Properties

  • It depend on the nature of coal; mineral matter chemistry and mineralogy, furnace  design,  furnace  operation  and  method  of  particulate  control;  such  as Sulphur Oxide (SOx) and Nitrogen Oxide (NOx) control technologies.
  • Fly ash particles are generally spherical in shape and ranging from 0.5 µm to 100 µm.

Chemical Properties

  • Major Constituents: Fly ash is a pozzolan, a substance containing aluminous and siliceous material that forms cement in the presence of water. In addition, it contains ferric oxide and calcium oxide.
  • Minor Constituents: Arsenic, beryllium, boron, cadmium, chromium, hexavalent chromium, cobalt, lead, manganese, mercury, molybdenum, selenium, strontium, thallium, and vanadium, along with very small concentrations of dioxins and PAH compounds.


  • Basically, there are two classes of fly ash: Class F and Class C fly ash.
  • The chief difference between these classes is the amount of calcium, silica, alumina, and iron content in the ash.

Class F

  • The burning of harder, older anthracite and bituminous coal typically produces Class F fly ash.
  • This fly ash is pozzolanic in nature, and contains less than 7% lime (CaO).

Class C

  • Fly ash produced from the burning of younger lignite or sub-bituminous coal, in addition to having pozzolanic properties, also has some self-cementing properties.
  • Class C fly ash generally contains more than 20% lime (CaO).
  • Unlike Class F, self-cementing Class C fly ash does not require an activator.

Applications of Fly Ash

  • Fly-ash pellets which can replace normal aggregate in concrete mixture
  • Embankments and other structural fills (usually for road construction)
  • Grout and Flowable fill production
  • Waste stabilization and solidification
  • Cement clinker production - (as a substitute material for clay)
  • Mine reclamation
  • Stabilization of soft soils
  • Road subbase construction
  • As aggregate substitute material (e.g. for brick production)
  • Mineral filler in asphaltic concrete
  • Agricultural uses: soil amendment, fertilizer, cattle feeders, soil stabilization in stock feed yards, and agricultural stakes
  • Loose application on rivers to melt ice
  • Loose application on roads and parking lots for ice control


  • Fly ash can be a cost-effective substitute for Portland cement in many markets.
  • It is also recognized as an environmentally friendly material because it is a byproduct and has low embodied energy, the measure of how much energy is consumed in producing and shipping a building material.
  • Fly ash utilization, especially in concrete, has significant environmental benefits including:
  • increasing the life of concrete roads and structures by improving concrete durability,
  • net reduction in energy use and greenhouse gas and other adverse air emissions when fly ash is used to replace or displace manufactured cement
  • reduction in amount of coal combustion products that must be disposed in landfills
  • conservation of other natural resources and materials.

Environmental Hazard

  • When ash is disposed in dry landfills or wet ponds, there are associated environmental effects. Wet surface impoundments account for a fifth of coal ash disposal.
  • These wet impoundments can be an issue if they do not have proper liners for the landfill or pond to prevent leaking and leaching.
  • Both leaking and leaching lead to groundwater contamination.
  • This groundwater contamination can be harmful to human heath if the groundwater is a source of drinking water.
  • In addition to leaching, fly ash toxics are able to travel through the environment as a result of erosion, runoff, or through the air as fine dust.
  • Application of flyash, particularly unweathered ones, shows a tendency of accumulating elements like B, Mo, Se and Al. The accumulations of these elements to toxic levels are responsible for reductions in the crop yields and consequently influence animal and human health.

Health Hazard

  • Fly ash contains crystalline silica which is known to cause lung disease, in particular silicosis, if inhaled.
  • It impacts on the nervous system, causing cognitive defects, developmental delays, and behavioral problems while also increasing a person's chance of developing kidney disease, and gastrointestinal illness.

National Mission On Quantum Technologies & Applications

  • The government in its budget-2020 has announced a National Mission on Quantum Technologies & Applications (NM-QTA) for developing quantum computing linked technologies in the country.


  • It aims at harnessing the potential of QTA and keep the country in league with the ones taking the lead in the domain

Need for NM-QTA

  • Quantum technology is opening up new frontiers in computing, communications, cyber security and encryption with wide-spread applications.It is expected that lots of commercial applications would emerge from theoretical constructs which are developing in this area.
  • It is perceived that the countries who achieve an edge in this emerging field will have a greater advantage in garnering multifold economic growth and dominant leadership role.
  • With such notion, it has become imperative both for government and industries to be prepared to develop these emerging and disruptive technologies in order to secure our communications, financial transactions, remain competitive, drive societal progress, generate employment, foster economic growth and to improve the overall quality of life.

About NM-TQA

  • The mission will be implemented by the Department of Science & Technology (DST) for a period of five years.
  • Focus Area:The areas of focus for the Mission will be in fundamental science, translation, technology development, human and infrastructural resource generation, innovation and start-ups to address issues concerning national priorities.
  • The next generation transformative technologies that will receive a push under this mission include quantum computers and computing, quantum communication,quantum key distribution, encryption, crypt analysis, quantum devices, quantum sensing, quantum materials, quantum clock, etc.
  • Digital platform will be created which will facilitate seamless application and capture Intellectual Property Rights (IPRs) and also in an institute of excellence, a centre will be established that will work in the field of intellectual property.
  • Knowledge translation clusters will be set up across different technology sectors including in new and emerging sectors for designing, fabrication and proof of concept.

QuEST Programme

  • The seeds for the national commitment to quantum computing was sown in mid-2017, when the DST’s Interdisciplinary Cyber-Physical Systems (ICPS) division invited proposals for projects related to quantum computing as part of the new Quantum-Enabled Science and Technology (QuEST) programme.
  • Phase-1 of the problem involvedhiring research experts and establishing teams with the know-how to physically build such systems.

Broad Objectives

  • Development and demonstration of quantum computers.
  • Development and demonstration of quantum communication & cryptography.
  • Development of quantum-enhanced and inspired technology.
  • Development of advanced mathematical quantum techniques, algorithms and theory ofquantum information systems.


Help in Development of Next Generation Technology

  • The Mission will be able address the ever increasing technological requirements of the society, and take into account the international technology trends and road maps of leading countries for development of next generation technologies.
  • It will help prepare next generation skilled manpower, boost translational research and also encourage entrepreneurship and start-up ecosystem development.

Boost to Quantum Technology

  • It would help develop and bring quantum computers, secured communications through fibre and free space, quantum encryption and crypt-analysis and associated technologies within reach in the country and help address India specific national and regional issues.

Bringing India in line with Advance Countries

  • By promoting advanced research in quantum science and technology, India can be brought at par with other advanced countries and can derive several direct and indirect benefits, leading to overall development of country.

Quantum Technologies

  • Quantum technologies comprise quantum computing, quantum communication, quantum optics, quantum information processing, quantum internet and quantum artificial intelligence.
  • It is based on the principles of quantum theory, which explains the nature of energy and matter on the atomic and subatomic level. It concerns the control and manipulation of quantum systems, with the goal of achieving information processing beyond the limits of the classical world.

Quantum Computing

  • Quantum computing is essentially harnessing and exploiting the amazing laws of quantum mechanics to process information.
  • A traditional computer uses long strings of “bits,” which encode either a zero or a one. A quantum computer, on the other hand, uses quantum bits, or qubits.Quibits are subatomic particles such as electrons and photons.
  • Operation of quantum computer is based on two key principles of quantum physics: Superposition and Entanglement.


  • There are three primary types of quantum computing.
  • Quantum annealing
  • Quantum simulations
  • Universal quantum computing
  • Each type differs by the amount of processing power (qubits) needed and number of possible applications, as well as the time required to become commercially viable.


  • Very Fast Performance:The basic advantage is speed as it is able to simulate several classical computers working in parallel.Exploiting the principles of quantum mechanics, they can easily tackle computational problems that may be tough for the classical computer as the size of the numbers and number of inputs involved grows bigger.
  • Highest Level of Accuracy:its highest level of accuracy makes it suitable for big data handling and cases concerned with national security, cyber security, etc.
  • Energy Efficient: In addition to holding the potential to solve some of the world’s most computationally challenging problems, quantum computers use significantly less energy, which could lead to lower costs.

Quantum Supremacy

  • Quantum supremacy refers to quantum computers being able to solve a problem that a classical computer cannot.
  • The term was coined by John Preskillin 2012.
  • In October, 2019, Google’s quantum computer- Sycamore, claimed to achieve  supremacy as it reportedly did the task in 200 seconds that would have apparently taken a supercomputer 10,000 years to complete.


High Construction Cost

  • The cost of construction and handling of errors in qubitsis quite huge, posing a great challenge in development of quantum computer.
  • Another major obstacle in the construction of quantum computers has been the physical realisation of chips that can process qubits.


  • To create a quantum computer, it is essential to keep an object in an overlapping state long enough to carry out the number of processes that are required. Unfortunately, this is not always possible since it continually loses this state of superposition, which is known as
  • Decoherence, caused by vibrations, temperature fluctuations, electromagnetic waves and other interactions with the outside environment, ultimately destroys the exotic quantum properties of the computer.


  • Optimization, planning, and logistics
  • Forecasting
  • Financial modeling
  • Drug design and discovery
  • Genomics
  • Cyber security and cryptography
  • Molecular modeling
  • Chemistry modeling, computational chemistry
  • Material design and modeling
  • Aerospace physics
  • Quantum simulation — simulation of physical systems at the quantum mechanical level
  • Random number generation

From Cloud Computing To Edge Computing

  • According to a research, by 2025, companies will generate and process more than 75% of their data outside of traditional centralised data centres- that is, at the “edge” of the cloud.
  • Internet of Things (IoT) devices are generating vast volumes of dataand approximately 80 billion devices will be connected to the internet by 2025.
  • In this backdrop, cloud-based systems cannot handle the massive rush of data, which gives way to Edge Computing.

Edge Computing

  • Edge computing is a distributed, open IT architecture that features decentralised processing power, enabling mobile computing and Internet of Things (IoT) technologies. Here, data is processed by the device itself or by a local computeror server, rather than being transmitted to a data centre.
  • Simply put, edge computing enables data to be analysed, processed, and transferred at the edge of a network.
  • The idea is to analyse data locally, closer to where it is stored, in real-time without latency, rather than send it far away to a centralised data centre. However, only the relevant data or information is collected and then sent, rather than all of the data collected.
  • Edge computing plays a pivotal role as it brings computing power, control, storage and applications closer to end users.
  • For ex. whether anyone is  streaming a video on Netflix or accessing a library of video games in the cloud, edge computing allows for quicker data processing and content delivery.

Difference with Fog Computing and Cloud Computing

  • The basic difference among the three lies in where the data processing takes place.
  • At the moment, the existing Internet of Things (IoT) systems perform all of their computations in the cloud using data centres.
  • Edge computing usually occurs directly on the devices to which the sensors are attached or a gateway device that is physically close to the sensors.That data doesn’t need to be sent over a network as soon as it processed; only important data is sent, reducing the amount of data that travels over the network.
  • Fog computing moves the edge computing activities to processors that are connected to the local area network (LAN) or into the LAN hardware itself so they may be physically more distant from the sensors and actuators.
  • In cloud computing, data is collected and analyzed in some centralized location where developers and operators have more control over processing and system communications.


  • Cost Effective: It allows for efficient data processing in that large amounts of data can be processed near the source, reducing Internet bandwidth usage. This both eliminates costs and ensures that applications can be used effectively in remote locations.
  • Reduces Latency: Edge computing reduces data latency and trips between networks and devices, allowing smart applications and devices to respond to data almost instantaneously, as its being created, eliminating lag time. This is critical for technologies such as self-driving cars.
  • Faster Response Time: The response times with edge computing is also faster, as it doesn’t need to go to the cloud, thus reducing the time it takes to gather actionable insights from data.
  • Increased Data Security: Due to its ability to process data without ever putting it into a public cloud, edge computing adds a useful layer of security for sensitive data .It protects sensitive data and helps organisations have greater monitoring systems.
  • Uninterrupted Connectivity:It allows smart devices and manufacturing equipment to operate without disruption, even if they’re offline or there’s intermittent connectivity.
  • Works on Multiple Devices: whether devices are new or legacy, edge computing can covert communication protocols. This allows language from older devices to be converted into language that modern devices and the cloud can understand, which can also reduce new equipment costs.


  • Field and Industrial IoT: Various sensors and other field devices across verticals like Manufacturing, Transportation, and Power are a prime candidate for Edge computing. These devices can be Energy Meters, Aircraft engines, Oil rigs, Scanners in Retail, Wind turbines, Connected cars, Radio-frequency identifications (RFIDs) in Supply chain, Robotics, etc.These are often characterized by applications that collect data from edge devices and analyze it for different business use cases – security management, predictive maintenance, performance or usage tracking, demand forecasting, etc.
  • Smart Cities and Architecture: Many cities across the globe are contending for the tag of a Smart City. IoT devices will make living in such cities easier for citizens. The use cases here range from municipalities providing faster urban services (repair of equipment), traffic management (to reduce gridlock), public safety and green energy provisioning.
  • Customer Experience in Retail and Hospitality: Customer sentiment data and social media data is collected and analyzed to improve customer experience. Data here is being captured by a kiosk or a Point of Sale (PoS) system or Terminal.
  • Facial and Image Recognition:As a way of identifying customers and reducing fraud in verticals such as Retail, Banking, and Entertainment.


  • Edge computing sites are usually remote with limited or no on-site technical expertise. If something fails on-site you need to have an infrastructure in place that can be fixed easily by non-technical local labor and further managed centrally by a small number of experts located elsewhere.
  • Scaling out to many small sites can be more complicated than adding the equivalent capacity to a single core datacenter. The increased overhead of physical locations can be difficult for smaller companies to manage.
  • Site management operations need to be highly reproducible across all edge computing sites to simplify management, allow for easier troubleshooting and to prevent the configuration of software implemented in slightly different ways at each of the sites.
  • While edge computing offers greater control over information flows by constraining the data geographically, the physical security of the site is often much lower. This can lead to a greater risk of malicious or accidental situations (like a tripped cable).

Way Forward

  • With specialized hardware, software, and developer environments, edge computing is likely to increase operational reliability, enable real-time predictions, and improve data security. The much anticipated 5G service, which promises lower latency and enhanced coverage and responsiveness and quantum computing, which accelerates computation, may further increase edge computing’s efficiency.
  • However, the efficient distribution of the processing needs across the network of edge devices will be a challenge. Also, efficient scheduling of tasks will become essential in avoiding system failure and optimizing machine learning. Over time, it is expected that more powerful processing chips with lower power requirements will be available, and then AI-based edge computing will really shine.

Guidelines For Evaluation Of Nanopharmaceuticals In India

  • Recently, the Ministry Science & Technology released Guidelines for Evaluation of Nanopharmaceuticals in India, in New Delhi.
  • The Guidelines are developed by Department of Biotechnology (DBT), Indian Council of Medical Research (ICMR) and Central Drugs Standard Control Organization (CDSCO), Ministry of Health and Family Welfare and is an outcome of all concerned Inter-Ministerial efforts coordinated by DBT.


  • To ensure the quality, safety and efficacy of nanopharmaceuticals.
  • To encourage the commercialization of nanotechnology based inventions by increasing their benefit-to-risk ratio.

Need for Guidelines

  • There are no specific guidelines for development and evaluation of nanopharmaceuticals in India, there is a need to formulate comprehensive guideline focusing on the quality, safety and efficacy of nanopharmaceuticals for their therapeutic use and application.

About the Guidelines

  • The guidelines have been developed in line with the provisions of Schedule Y of Drugs and Cosmetics Rules, 1945 as well as Second Schedule of the New Drugs and Clinical Trials Rules, 2019.
  • The guidelines define the nano-pharmaceuticals and categorise it according to its level of degradability and organic or inorganic nature.
  • It applies to the nano pharmaceuticals in the form of finished formulation as well as Active Pharmaceutical Ingredient (API) of a new molecule or an already approved molecule with altered nanoscale dimensions.
  • However, these guidelines do not apply to the conventional drug with incidental presence of nanoparticles or drug products containing microorganisms or proteins, which are naturally present in the nanoscale range.
  • These are also not applicable to medical devices, in vitro diagnostics, tissue engineered products using nanotechnology and nanoparticle modified cell based therapies.


  • A nanopharmaceutical is defined as a pharmaceutical preparation containing nanomaterials (1 to 100 nm in at least one dimension) intended for internal use or external application on human for the purpose of therapeutics, diagnostics and health benefits.

Broadly, all nanopharmaceutical preparations will be treated as New Drug which will be evaluated by CDCSO. They are divided in to following four categories:

  • Category I: The drug is a new molecular entity and the nanocarrier is also new and not approved in any country.
  • Category II: The drug is a new molecular entity not approved in any country, but the nanocarrier is already used / approved for other nanopharmaceuticals.
  • Category III: Conventional/ traditional form of the drug is approved in well regulated countries and/or India but the nanocarrier system is new and not approved in any country.
  • Category IV: Conventional/traditional form of the drug and the nanocarrier system both are approved as a specific formulation in well regulated countries, but yet not in India. It should be subjected to abbreviated/ bridging studies as per Second Schedule of NDCTR.
  • Nanopharmaceuticals offer the ability to detect diseases at much earlier stages and the diagnostic applications could build upon conventional procedures using nanoparticles
  • Nanopharmaceuticals can enable target specific delivery of drugs and therapeutic molecules minimizing off target effects and toxicity.
  • Nanopharmaceutical have higher efficacy, lower toxicity and are safer than the conventional drugs.
  • Nanopharmaceutical reduces the cost of drug discovery, design & development and enhances the drug delivery process. This results in improved success rate which enables faster introduction of new, cost-effective products to the marketplace.

Impact of Guidelines

  • Way to Effective Research: These guidelines will pave the way for effective translational research towards development of novel nanoformulations. Indian researchers would be facilitated to undertake research in line with the regulatory guidelines and is expected that Industry would be keen to participate from the beginning of the research pipeline towards product development and commercialization.
  • Facilitating Decision Making: It will facilitate the decision making by regulator during clearances to newer products based on nanotechnology and similarly to researchers to get clearance for their products to launch in market.
  • Benefits to End Users: End users will also be benefited by the quality assured anticipated products in the market in accordance to the guidelines.
  • Private Investments: It will help attracting private investments in the country since these guidelines would strengthen the regulatory system.
  • Safety Guidelines for Other Domains: It will give impetus to initiate activities for developing safety guidelines for other domains like agri-inputs and agri-products, cosmetics, implantable devices, through interventions of nanotechnology.
  • Contribute to Affordable Health Care for All Mission: The guidelines will pave the way for significant benefits through such cutting-edge technology and contribute to the mission on "Affordable Health Care for All".

Way Forward

  • India is a developing country with a huge population burden. In this regard, development of cost effective quality enabled products is important which can be achieved through cutting edge technologies like nano-interventions.
  • The nanotechnology intervention has opened a new horizon for targeted delivery of approved drugs and repurposing of drugs. Every year several new nanopharmaceuticals/ nanomedicine are being introduced into the market globally.
  • It is one of the most important steps for delineating quality, safety and efficacy assessment of the novel nanoformulations and the rapid progress in this emerging field is expected to change the current therapeutic practice in near future.
  • It is intended to provide transparent, consistent and predictable regulatory pathways for nanopharmaceuticals and will encourage the Indian innovators and industries to develop and commercialize new nanopharmaceuticals which will make our country a global leader in this area.


Why is it in News?

In the samples collected by CSIR-NEERI, bacteriophage was found to be 3 times more in proportion to the isolated bacterias taken.

About Bacteriophage:

  • A bacteriophage is a type of virus that infects bacteria. In fact, the word bacteriophage literally means ‘bacteria eater’, because bacteriophages destroy their host cells.
  • All bacteriophages are composed of a nucleic acid molecule that is surrounded by a protein structure.
  • A bacteriophage attaches itself to a susceptible bacterium and infects the host cell. Following infection, the bacteriophage hijacks the bacterium's cellular machinery to prevent it from producing bacterial components and instead forces the cell to produce viral components.
  • Eventually, new bacteriophages assemble and burst out of the bacterium in a process called lysis.
  • Bacteriophages occasionally remove a portion of their host cells' bacterial DNA during the infection process and then transfer this DNA into the genome of new host cells. This process is known as transduction.

Source: TH, NCERT